voltbricks

DATASHEET

(ПРЕДВАРИТЕЛЬНЫЙ)

Серия VNA10 «ABEL»

Импульсный стабилизатор напряжения без гальванической развязки с интегрированным дросселем

1. Основные характеристики

- Диапазон входного напряжения от 4 до 24 В
- Регулируемое выходное напряжение от 0,6 до 5,5 В
- Выходной ток до 10 А
- Низкопрофильная конструкция высотой 7,3 мм
- Частота преобразования 500 кГц

2. Преимущества

- Компактные размеры
- Интегрированный дроссель
- Минимум внешних компонентов
- Высокий КПД
- Сверхбыстрый отклик на изменение нагрузки
- Низкое энергопотребление на холостом ходе и в режиме ожидания
- Дистанционное управление и плавный старт
- Защиты от перегрузки и короткого замыкания

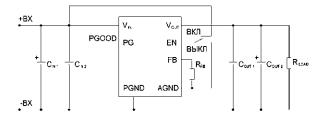


Рис. 1. Типовая схема включения стабилизатора VNA10T0,65,5SQ.

3. Описание

Импульсный стабилизатор напряжения серии VNA10 «ABEL» (далее – модуль) — компактное решение для телекоммуникационной и общепромышленной отраслей от ведущего российского разработчика

B PA3PABOTKE

и производителя компонентов для систем электропитания — компании «Вольтбрикс».

В основе VNA10 лежит высокоэффективный контроллер с интегрированными MOSFET-транзисторами, включенные по схеме синхронного выпрямления и оптимизированные для работы на малых нагрузках (Light-load). Такая схема позволяет получить 94 % пиковой эффективности (КПД) для 30 % нагрузки и 92,5 % КПД при 10 % нагрузке, что сопоставимо с мировыми аналогами.

Стабилизатор разработан с учетом специфики применения в портативных устройствах, требующих малый ток потребления в режиме ожидания. Типовое значение тока в режиме StandBy составляет 7 мкA (максимум — 15 мкA).

Наличие плавного старта и дистанционного управления позволяет проектировать распределенные архитектуры электропитания без оглядки на ограничения по перегрузочной способности входной сети и избежать, например, срабатывание защиты от перегрузки или короткого замыкания DC/DC-преобразователя, питающего группу стабилизаторов VNA.

3.1. Дополнительная информация

3.1.1. Описание на сайте производителя

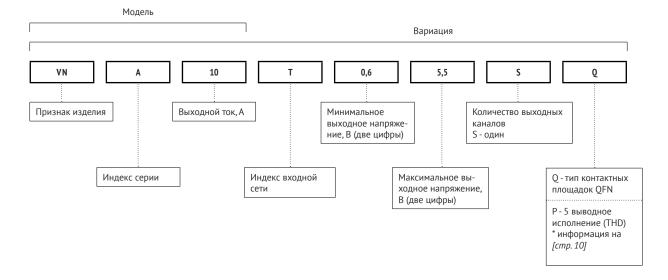
https://voltbricks.ru/product/dcdc/vna

3.1.2. Отдел продаж

+7 473 211-22-80; sales@voltbricks.ru

3.1.3. Техническая поддержка

support@voltbricks.ru


4. Содержание

1. Основные характеристики	1
2. Преимущества	1
3. Описание	1
4. Содержание	2
5. Условное обозначение модулей	2
6. Расположение и назначение выводов	3
7. Характеристики	3
7.1. Упрощённая структурная схема	3
7.2. Абсолютные предельные значения	4
7.3. Рекомендуемые рабочие режимы	4
7.4. Электрические характеристики модуля	4
8. Схема включения	5
9. Результаты испытаний	6
9.1. Осциллограммы	6
9.1.1. Переходное отклонение выходного напряжения при ск	ач-
кообразном изменении выходного тока	6
9.1.2. Пульсации выходного напряжения	6
9.2. КПД	7

10. Сервисные функции	••••••
10.1. Установка выходного напряжения	
10.2. Функция Вкл/Выкл	
11. Габаритный чертёж	
12. Монтаж на печатную плату	
13. Штыревое исполнение	1
13.1. Схема включения	1
13.2. Ограничение выходного тока	1
13.3. Габаритный чертеж	1

5. Условное обозначение модулей

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 473 211-22-80 или электронной почте sales@voltbricks.ru

6. Расположение и назначение выводов

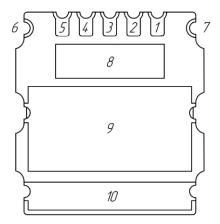


Рис. 2. Расположение выводов модуля VNA10T0,65,5SQ (вид снизу).

Наименование вывода	Расположение вывода	Назначение вывода
AGND	1	Аналоговая земля, нулевое опорное напряжение для внутренних цепей модуля и для возврата внешних цепей EN (Вкл/Выкл), PG (Диагностика), FB (Вход обратной связи). Не допускается соединять этот вывод с выводами PGND внешней цепью, это соединение выполнено внутри модуля.
EN	2	Вывод Вкл/Выкл. Сигнал низкого уровня на этом выводе (0,4 В или ниже) относительно вывода AGND выключает модуль, сигнал высокого уровня (1 ВV _{IN}) относительно вывода AGND включает его.
FB	3	Вход обратной связи модуля. Выходное напряжение зависит от сопротивления резистора, подключенного между этим выводом и выводом AGND.
NC	4	Вывод не подключен ни к каким цепям модуля.
PG	5	Выход сигнала диагностики выходного напряжения модуля (открытый сток).
V _{OUT}	6, 7, 8	Выходное напряжение модуля. Внешние выходные конденсаторы и нагрузка подключаются между этими выводами и выводами PGND в непосредственной близости от модуля.
PGND	9	Силовая земля, возврат тока силового каскада модуля. Минусовые цепи входных и выходных конденсаторов C_{IN} и C_{OUT} подключаются между этой группой контактов и группами V_{IN} и V_{OUT} соответственно. Группа выводов PGND используется также и для повышения эффективности теплоотвода от модуля, поэтому на печатной плате конечного устройства рекомендуется выполнить несколько переходных отверстий, соединяющих цепь PGND на противоположных сторонах этой платы для улучшения тепловых характеристик.
V _{IN}	10	Входное напряжение. Внешние входные конденсаторы подключаются между этими выводами и выводами РGND в непосредственной близости от модуля.

7. Характеристики

7.1. Упрощённая структурная схема

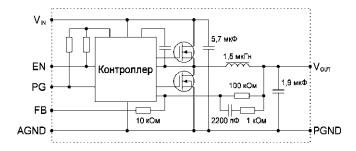


Рис. 3. Упрощённая структурная схема VNA10T0,65,5SQ.

7.2. Абсолютные предельные значения

Параметр	Обозначение	Мин.	Макс.	Единица измерения
Входное напряжение	V _{IN}	-0,3	+25	В
Напряжение на выводе EN	V _{EN}	-0,3	V_{IN}	В
Напряжение на выводе PG	V _{SS}	-0,3	+25	В
Напряжение на выводе FB	V _{FB}	-0,3	+4	В
Рабочая температура кристалла ^[1]	T _J	-40	+150	°C
Температура хранения	T _S	-60	+125	°C

7.3. Рекомендуемые рабочие режимы

Параметр	Обозначение	Мин.	Тип.	Макс.	Единица измерения
Входное напряжение	V_{IN}	4	12	24	В
Рабочая температура окружающей среды	T _A	-40	_	+85[2]	°C
Выходной ток	l _{out}	0	_	10	A
Диапазон выходного напряжения	V _{OUT}	0,6	_	5,5	В

7.4. Электрические характеристики модуля

Измерения проводились при (если не указано иное):

 $T_A = 25$ °C,

 $V_{IN} = 12 B,$

V_{EN} = 12 B,

 $V_{OUT} = 5 B$,

I_{OUT} = 10 A,

 $C_{IN1} = 2 \times 270$ мкФ, 35 В, полимерный;

 C_{IN2} = 2 × 22 мкФ, 25 В, 1210 керамический;

С_{ОUТ1} = 100 мкФ, 6,3 В, 1210 керамический;

C_{OUT2} = 220 мкФ, 10 В, танталовый

Параметр	Условия измерения	Мин.	Тип.	Макс.	Единица измерения
Входные характеристики					
Порог защиты от пониженного входного напряжения	При нарастании V _{IN}			3,9	В
Гистерезис защиты от пониженного входного напря- жения	При снижении V_{IN}		500		мВ
Ток потребления в ждущем режиме	V _{EN} = AGND	_	7	15	мкА
Ток потребления в режиме холостого хода	I _{OUT} = 0 A; NORMAL MODE		0,17		мА
	I _{OUT} = 0 A; ULTRASONIC MODE		2,2		мА
Выходные характеристики					
Нестабильность выходного напряжения при плавном изменении входного напряжения	V _{IN} = 824 B		0,5		%
Нестабильность выходного напряжения при плавном изменении выходного тока [<i>Puc. 4</i>]	I _{OUT} = 010 A		1		%
Размах пульсаций выходного напряжения от пика до пика	Для полосы пропускания 20 МГц		25		мВ
Порог защиты от перегрузки по выходному току			15		A
Источник опорного напряжения					
Опорное напряжение		0,594	0,600	0,606	В

^[1] Температура кристалла — температура микросхемы контроллера модуля. Температура окружающей среды — температура воздуха окружающей среды. Значения приведены для естественного охлаждения модуля, установленного на четырёхслойную печатную плату размерами не менее 100×100 мм с толщиной фольги 70 мкм.

^[2] При соблюдении условия T_J < +150 °C.

Параметр	Условия измерения	Мин.	Тип.	Макс.	Единица измерения
Функция Вкл/Выкл (вывод EN)					
Напряжение гарантированного низкого уровня	Относительно вывода AGND	0		0,4	В
Напряжение гарантированного высокого уровня	Относительно вывода AGND	1		V _{IN}	В
Диапазон режима ULTRASONIC MODE		1		1,6	В
Втекающий ток	3,3 B ≤ V _{EN} ≤ V _{IN}			150	мкА
Вытекающий ток	1 B ≤ V _{EN} ≤ 2,5 B			15	мкА
Втекающий ток	V _{EN} ≤ 0,4 B			5	мкА
Частота преобразования					
	NORMAL MODE	0,03		500	кГц
	ULTRASONIC MODE	30		500	кГц
Масса	исполнение Q			1,2	Г
	исполнение Р			2.3	г

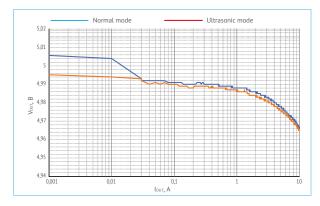
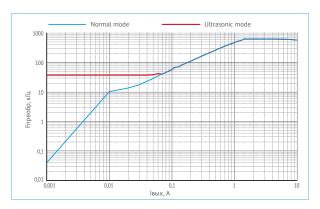



Рис. 4. Типовая зависимость выходного напряжения от выходного тока. V_{IN} = 12 B; V_{OUT} = 5 B.

Puc. 5. Зависимость частоты преобразования от тока нагрузки. $V_{_{IN}}$ = 12 B; $V_{_{OUT}}$ = 5 B.

8. Схема включения

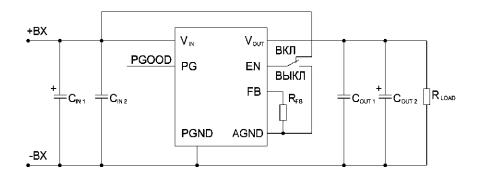


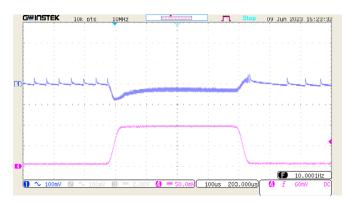
Рис. 6. Схема включения.

Таблица 1. Описание элементов схем подключения.

Cin1	полимерный	2 × 270 мкФ
Cin2	керамический	2 × 22 мкФ
Cout1	керамический	100 мкФ
Cout2	танталовый	220 мкФ

номинал R_{FB} указан в [10.1]

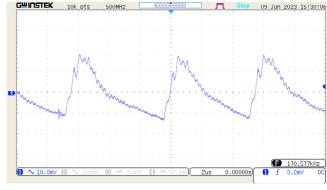


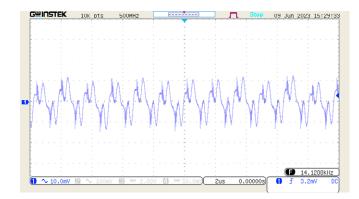

9. Результаты испытаний

Для исполнения VNA10T0,65,5SQ при включении согласно [Puc. 6].

9.1. Осциллограммы

9.1.1. Переходное отклонение выходного напряжения при скачкообразном изменении выходного тока

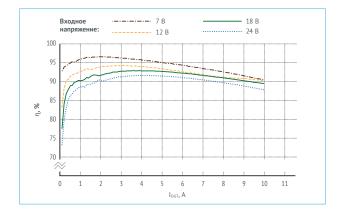



Puc. 7. $I_{OUT} = 0.1 - 10 A$; 20 A/MKC.

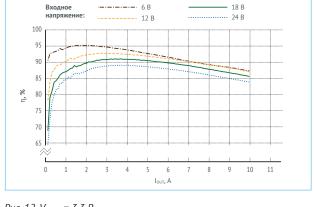
Puc. 8. I_{OUT} = 0,1–10 A; 0,3 A/мкс.

Верхний луч (синий) — выходное напряжение, 100 мВ/дел; нижний луч (красный) — выходной ток, 5 А/дел; развёртка — 100 мкс/дел. V_{IN} = 12 B; V_{OUT} = 5 B.

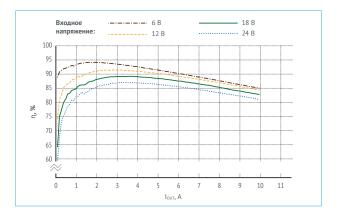
9.1.2. Пульсации выходного напряжения

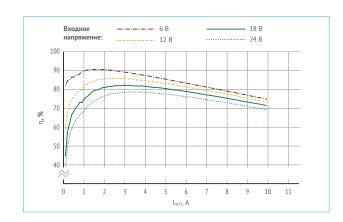


Puc. 9. $I_{OUT} = 0.3 A$.


Puc. 10. $I_{OUT} = 10 A$.

10 мВ/дел; развёртка — 2 мкс/дел. $V_{IN} = 12 B$; $V_{OUT} = 5 B$.


9.2. КПД


Puc. 11. $V_{OUT} = 5 B$.

Puc. 12. $V_{OUT} = 3,3 B$.

 $Puc. 13. V_{OUT} = 2,5 B.$

Puc. 14. $V_{OUT} = 1,2 B.$

10. Сервисные функции

10.1. Установка выходного напряжения

Установка выходного напряжения модуля в диапазоне 0,6...5,5 В (в соответсвии с рис. 14) осуществляется выбором сопротивления резистора, подключаемого между выводом FB и выводом AGND. Значение сопротивления этого резистора рассчитывается по формуле:

Rfb [
$$\kappa$$
OM] = $\frac{60}{V_{OUT} - 0.6} - 10$,

либо выбирается из таблицы:

V _{OUT} ,B	0,6	0,7	0,8	0,9	1	1,2	1,5	1,8	2,5	3	3,3	5,0	5,5
Rfb, кОм	не уст	590	287	187	140	88,7	56,2	39,2	21,5	15	12,1	3,57	2,21

10.2. Функция Вкл/Выкл

Модуль имеет возможность включения и выключения выходного напряжения сигналом логического уровня, подаваемым на вывод EN относительно вывода AGND. Сигнал низкого уровня на выводе EN (0,4 В или ниже) относительно вывода AGND выключает модуль, сигнал высокого уровня (1 B...V_{IN}) относительно вывода AGND включает его. При соединении выводов EN с V_{IN} - модуль будет постоянно включен. Изменение уровня сигнала на выводе EN должно происходить за время не более 2 мс.

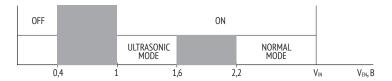


Рис. 15. ВКЛ/ВЫКЛ в зависимости от V_{EN}

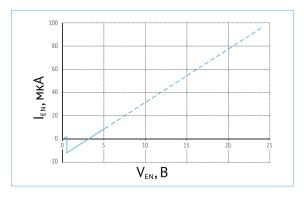


Рис. 16. Типовая кривая втекающего/вытекающего тока по выводу EN в зависимости от напряжения на нем.

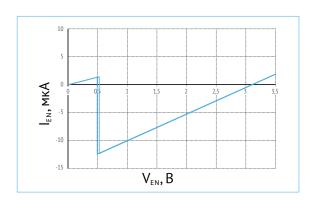


Рис. 17. Типовой гистерезис включения/выключения модуля по выводу

11. Габаритный чертёж

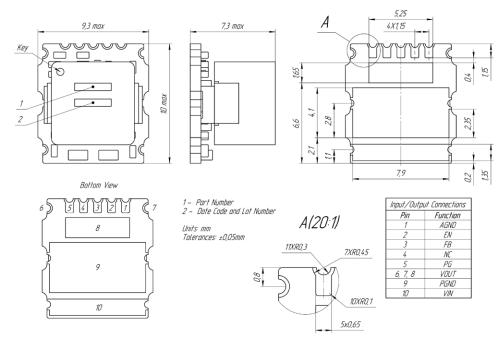


Рис. 18. Габаритный чертеж

Рекомендация: При монтаже рекомендуется задействовать все контактные площадки, в особенности PGND, т.к. используется для теплоотвода.

12. Монтаж на печатную плату

Монтаж изделия на печатную плату следует производить с использованием оборудования для поверхностного монтажа ЭРИ. Необходимо использовать паяльные пасты с шариками припоя не менее 4 типа (20–38 мкм) из сплавов:

- Sn63, Pb37;
- Sn62, Pb36, Ag2;
- или Sn62.6, Pb36.8, Ag0.4, Sb0.2.

Рекомендуется использовать пасту КОКІ SS58-M955LV.

Рис. 19. График и рекомендации по настройке термопрофиля в печи конвекционного нагрева.

При необходимости использования <u>бессвинцовых процессов</u>, монтаж следует производить с использованием паяльных паст с шариками припоя не менее 4 типа (20–38 мкм) из сплавов: Sn96.5; Ag3.0; Cu0.5 (SAC305)

Рекомендуется использовать пасту S3x58-G803.

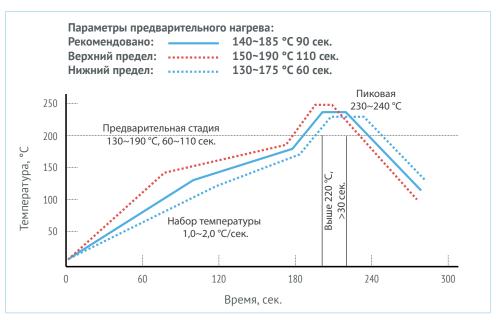


Рис. 20. График и рекомендации по настройке термопрофиля оплавления в печи конвекционного нагрева.

13. Штыревое исполнение

Возможно к заказу исполнение VNA10T0, 65,5SP с выводами под ручной монтаж на печатную плату (THD):

- исполнение с частичной схемой включения [Puc. 22];
- исполнение включает функции EN и FB;
- шаг выводов аналогичен корпусу «ТО220-5».

Рис. 21. Внешний вид VNA10T0, 65,5SP.

13.1. Схема включения

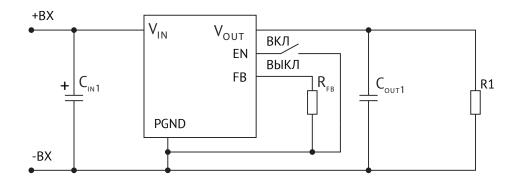


Рис. 22. Схема включения для VNA10T0, 65,5SP.

Таблица 2. Описание элементов схем подключения.

Cin1	танталовый	2 × 270 мкФ
Cout1	танталовый	100 мкФ

номинал R_{FB} указан в [10.1]

13.2. Ограничение выходного тока

На рис. 23 приведен график зависимости максимально возможного тока от выходного напряжения, который способно обеспечить штыревое исполнение преобразователя VNA10 в HKY при Tokp = 25°C без использования принудительного охлаждения и входном напряжения UBx = 12 В.

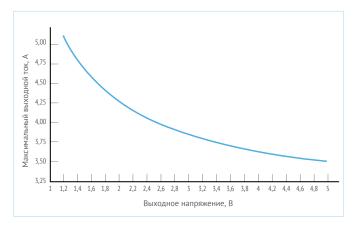
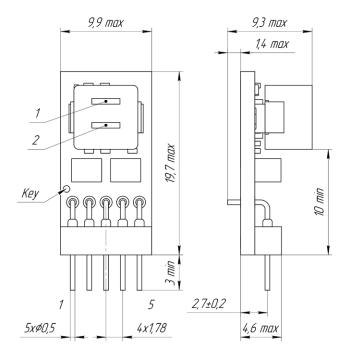



Рис. 23. Зависимость максимального выходного тока от выходного напряжения.

13.3. Габаритный чертеж

Input/Output Connections				
Pin	Function			
1	FB			
2	VOUT			
3	PGND			
4	VIN			
5	EN			

1 - Part Number

2 – Date Code and Lot Number

Units: mm Tolerances: ±0,05mm

Рис. 24. Габаритный чертеж и обозначение выводов VNA10T0, 65,5SP.

voltbricks

www.voltbricks.ru info@voltbricks.ru

Компания «Вольтбрикс» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

396005, Россия, Воронежская область, Медовка, Перспективная, д.1 +7 473 211-22-80

Даташит распространяется на следующие модели: VNA10T0,65,5SQ, VNA10T0,65,5SP.