voltbricks

DATASHEET

(ПРЕДВАРИТЕЛЬНЫЙ)

ОТКРЫТ ПРЕДЗАКАЗ

Серия VDMC VDMC400

DC/DC преобразователи повышенной надежности

1. Описание

Унифицированные DC/DC преобразователи с выходной мощностью 400 Вт, предназначенные для эксплуатации в аппаратуре, к которой предьявляются повышенные требования по надежности. Схемотехнические решения, использованные в данной линейке совместно с EMI-фильтрами и модулями удержания, позволяют обеспечить соответствие стандартам MIL-STD-704 и MIL-STD-1275 для электропитания воздушных судов и наземных транспортных средств. Модули способны работать в широком диапазоне температур корпуса, включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току и короткого замыкания.

1.1. Разработаны в соответствии

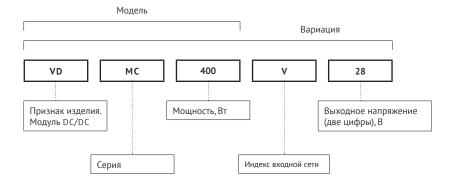
- MIL-STD-704
- MIL-STD-1275
- MIL-STD-810G
- MIL-STD-461
- EN 60950

1.2. Особенности

- Гарантия 5 лет
- Форм-фактор 1/2 Brick
- Выходной ток до 40 А
- Рабочая температура корпуса -55...+105 °C
- Низкопрофильная 12,7 мм конструкция
- Защиты от перегрузки по току, КЗ и перенапряжения
- Дистанционное вкл/выкл
- Параллельная работа
- Типовой КПД 92%
- Герметизирующая заливка
- Выносная обратная связь
- Синхронизация

1.3. Дополнительная информация

1.3.1. Отдел продаж


+7 473 211-22-80; <u>sales@voltbricks.ru</u>

1.3.2. Техническая поддержка

support@voltbricks.ru

2. Условное обозначение модулей

Для получения дополнительной информации свяжитесь с отделом продаж по телефону +7 473 211-22-80 или электронной почте sales@voltbricks.ru

2.1. Сокращения

В настоящем DATASHEET приняты следующие сокращения:

Сокращение	Описание
P _{Bых} .	Выходная мощность
U _{вых.ном.}	Номинальное выходное напряжение
І _{вых.ном.}	Номинальный выходной ток
I _{вых.мин.}	Минимальный выходной ток
U _{BX.HOM.}	Номинальное входное напряжение
U _{BX.MUH} U _{BX.MAKC} .	Диапазон входного напряжения
T _{KOPN} .	Рабочая температура корпуса
T _{OKP} .	Рабочая температура окружающей среды
НКУ	Нормальные климатические условия (температура воздуха от 15°C до 35°C)
ТУ	ТУЛВ.436430.002 ТУ

3. Характеристики преобразователей

Все характеристики приведены для НКУ, U_{вх.ном}, I_{вых.ном}, если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т. п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.voltbricks.ru в разделе «Документация».

3.1. Характеристики входного напряжения

Параметр	Условия	Значение
Индекс входной сети		«V»
Номинальное входное напряжение		28 B
Диапазон входного напряжения		16-40 B
Переходное напряжение	0,1 c	11-50 B
Типовой КПД		92 %

3.2. Выходные характеристики

3.2.1. Выходная мощность и ток

Модель	VDMC400						
Выходная мощность, Вт	400						
Номинальное выходное напряжение, В	9	12	15	24	28	48	
Номинальный выходной ток, А	40	33,33	26,67	16,67	14,28	8,33	

3.2.2. Выходные характеристики

Параметр	Условия	Значение
Мощность		400 Вт
Установившееся отклонение выходного напряжения	Нагрузка 10-100 %	±1% от U _{вых.ном}
	Нагрузка 0 <i>-</i> 10 %	±2 % ot U _{bux.hom}
Нестабильность выходного напряжения	При плавном изменении входного напряжения	±0,5 % от U _{вых.ном}
	При изменении нагрузки 10-100 %	±0,5 % от U _{вых.ном}
Размах пульсаций (пик-пик)	Ивых, выше 5 B	2 % от U _{вых.ном}
	Ивых, до 5 В включительно	не более 150 мВ
Максимальная суммарная емкость конденсаторов	9 B	16 000 мкФ
на выходе модуля (при нагрузке 100 %)	12 B	4 600 мкФ
	15 B	3 200 мкФ
	24 B	1 600 мкФ
	28 B	1050 мкФ
	48 B	370 мкФ
Время включения		<50 мс
Переходное отклонение выходного напряжения	При скачкообразном изменении с Uвх.НОРМ до Uвх.макс / Uвх.мИН (длительность фронта >100 мкс)	±10 % от U _{вых.ном}
	При скачкообразном изменении тока нагрузки на 25 % от Івых.ном (длительность фронта >100 мкс)	±5 % от U _{вых.ном}
Потребление в режиме XX (при U _{вх.ном})		500 мА

Параметр	Условия	Значение
Потребление в выключенном состоянии по ДУ		5 mA

3.3. Общие характеристики

Параметр	Условия	Значение
Рабочая температура корпуса	Без падения мощности	−55+105 °C
Рабочая температура окружающей среды	При соблюдении температуры корпуса	−55+100 °C
Температура хранения		−60+120 °C
Частота преобразования	Частота изолирующей части - половина от данного значения	800 κΓιμ
Прочность изоляции (60 с)	Вход/выход	=2000 B
	Вход/корпус, выход/корпус	=1500 B
Сопротивление изоляции @ =500 B		не менее 1 ГОМ
Срок гарантии		5 лет

3.4. Защитные функции^[1]

Параметр	Условия	Значение
Защита от короткого замыкания		есть
Защита от перенапряжения на выходе	$U_{BX} = U_{BX.HOM.}$, $I_{BbiX.} = 0.5$ $I_{BbiX.HOM.}$	≤1,3 U _{BX.HOM.}
Синусоидальная вибрация		102000 Гц, 200 (20) м/с² (g), 0,3 мм
Устойчивость к пыли		есть
Устойчивость к соляному туману		есть
Устойчивость к влаге	95 % при Т _{ОКР} =35°C	есть

3.5. Конструктивные параметры

Параметр	Условия	Значение		
Форм-фактор		1/2 Brick		
Материал корпуса		алюминий с покрытием МДО		
Материал выводов		фтористая бронза с покрытием SnPb		
Температура пайки	5 c	260 °C		
Габаритные размеры	Без учета выводов	макс. 58,4×61×12,7 мм		

^[1] Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

3.6. Функциональная схема

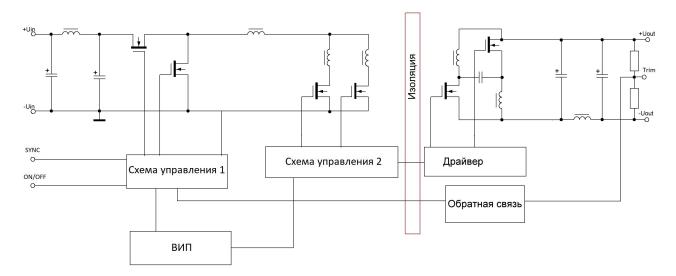


Рис. 1. Функциональная схема VDMC400.

4. Схемы включения

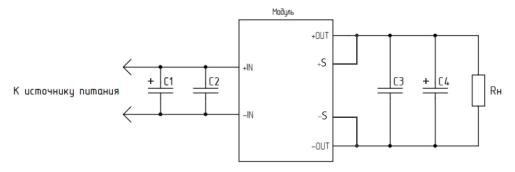


Рис. 2. Типовая схема включения VDMC400.

Вместо танталового конденсатора допускается установка конденсатора любого другого типа такой же емкости с низким значением ESR. Максимальное значение емкости входных конденсаторов не ограничено и выбирается с учетом конкретных условий эксплуатации модулей.

Элемент	Тип	Входное напряжение	Выходное напряжение	Емкость
C1	Танталовый	28 B	-	330 мкФ
C2	Керамический	28 B	-	10 мкФ
C3	Керамический	-	24, 28, 48 B	10 мкФ
C4	Полимерный	-	9 B	1000 мкФ
			12 B	330 мкФ
		_	15 B	220 мкФ
		_	24; 28 B	120 мкФ
			48 B	56 мкФ

5. Сервисные функции

5.1. Дистанционное управление

5.1.1. Включение модулей путем соединения вывода «ВКЛ/ВЫКЛ» с выводом «-ВХ»

Функция дистанционного управления (ДУ) реализована таким образом, что при замыкании вывода «ВКЛ/ВЫКЛ» на «-ВХ» модуль выключается. Функция «ДУ» позволяет по команде управлять состоянием модуля (включен/выключен), используя для управления механическое реле

[Puc. 4], биполярный транзистор, подключенный к выводу «ВКЛ/ВЫКЛ» по схеме «открытый коллектор» [Puc. 5] или оптрон [Puc. 6].

При этом через ключ может протекать ток до 2 мА, а максимальное падение напряжения на ключе должно быть не более 1 В. В разомкнутом состоянии к ключу может быть приложено напряжение до 8 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации ДУ одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ/ВЫКЛ», «–ВХ» и коммутирующий ключ. Если функция ДУ не используется, вывод «ВКЛ/ВЫКЛ» допускается оставить неподключенным или обрезать.



Рис. 3. ДУ с помощью реле.

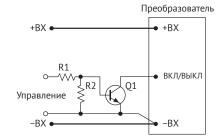


Рис. 4. ДУ с помощью биполярного транзистора.

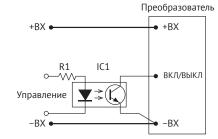


Рис. 5. ДУ с помощью оптрона.

5.1.2. Выключение модулей путем подачи управляющего сигнала

Если напряжение на управляющем выводе менее 1,0 В, то модуль перейдет в выключенное состояние. Если напряжение на управляющем выводе 2,5 В и более, то модуль перейдет во включенное состояние. Максимальное напряжение, прикладываемое к входу «ВКЛ/ВЫКЛ», не должно превышать 50 В.

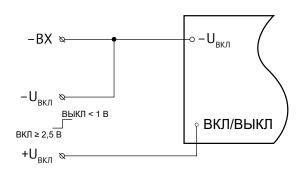


Рис. 6. Управление логическим напряжением.

5.2. Регулировка

Рис. 7. Регулировка увеличением $U_{{\scriptscriptstyle B b i X^*}}$

 $Puc.~8.~Peгулировка~cнижением~U_{{\scriptscriptstyle BbIX}}.$

Регулирование выходного напряжения модулей осуществляется путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения [Puc. 8] или к выводу «+ВЫХ» для уменьшения выходного напряжения [Puc. 9].

5.3. Синхронизация

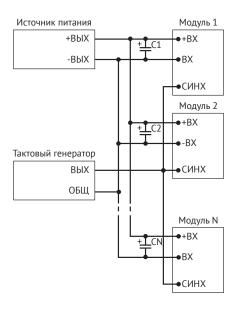


Рис. 9. Пример построения системы с синхронизацией от внешнего тактового генератора.

Тип модуля	Параметр	Мин.	Ном.	Макс.
VDMC400	Напряжение верхнего порога, В	3,5	-	5,5
	Напряжение нижнего порога, В	0	-	0,5
	Коэффициент заполнения	0,2	-	0,5
	Частота синхроимпульсов, кГц	750	800	900

5.4. Выносная обратная связь

Применение выносной обратной связи (ОС) позволяет обеспечить компенсацию падения напряжения на соединительных проводах и развязывающих диодах. Максимальная величина компенсации падения выходного напряжения не менее $10\%~U_{\rm Bыx}$. Для обеспечения лучшей помехозащищённости выводы «+ОС» и «-ОС» модулей электропитания рекомендуется подключать к нагрузке «витой парой» сечением не менее $0.1~{\rm Mm}^2$.

Типовая схема включения выносной ОС для системы электропитания с «длинными» линиями питания приведена на рисунке:

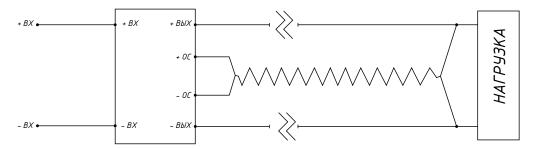


Рис. 10. Типовая схема включения выносной ОС.

В случае, когда функция выносной ОС не используется, необходимо напрямую соединить вывод «+OC» с выводом «+BЫХ», вывод «-OC» с выводом «-BЫХ». Не допускается оставлять неподключёнными выводы «+OC» и «-OC».

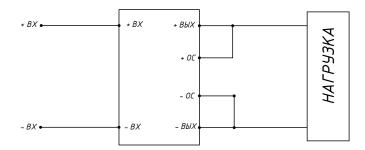


Рис. 11. Типовая схема включения без использования выносной ОС.

5.5. Параллельная работа

Модули VDMC400 имеют функцию параллельной работы на общую нагрузку. Возможность параллельного соединения выходов модулей электропитания для работы на общую нагрузку позволяет увеличить суммарную выходную мощность модулей до значения:

$$P_{CYMM} = 0.85 \cdot N \cdot P_{H}$$

0,85 – рекомендуемый коэффициент загрузки модулей

N - количество модулей, включаемых параллельно

Р – номинальная выходная мощность модуля, Вт

Допускается параллельное подключение до четырех модулей одновременно.

Подключение модулей электропитания для параллельной работы осуществляется соединением входных и выходных цепей модулей на мощные сборные шины и объединением у них выводов параллельной работы, синхронизации и дистанционного выключения соответствии с [Puc. 13] и [Puc. 14]. При этом необходимо соблюдать следующие рекомендации:

- модули электропитания должны располагаться в непосредственной близости друг от друга.
- входные и выходные конденсаторы должны соответствовать типовой схеме включения модуля и располагаться в непосредственной близости от соответствующих штырей модулей;
- предохранители FU1 FU4 должны кратчайшим путем соединяться с входными конденсаторами модулей;
- разделительные диоды VD1 VD4 должны кратчайшим путем соединяться с выходными конденсаторами модулей. В качестве диодов VD1 VD4 применяются диоды Шоттки, имеющие минимальное падение напряжения. Их максимальное обратное напряжение должно быть в 1,5 2 раза больше, чем номинальное выходное напряжение модулей. Максимальный прямой ток диодов должен минимум в два раза превосходить номинальный выходной ток одного модуля.
- проводники, соединяющие выходные выводы модулей со сборными шинами должны быть одинаковыми, минимальной длины и большого сечения. При этом особое внимание следует обратить на «минусовые» выходы модулей электропитания. Подключение в «минусовые» выходные цепи разделительных диодов и токоизмерительных резисторов не допускается;
- сборные шины должны иметь сечение в N раз большее, чем проводники, соединяющие модули с шиной, где N количество модулей, включенных параллельно;
- соединение сборных шин с нагрузкой должно находиться в средней части шин;
- категорически запрещается коммутировать выходные цепи модулей во включенном состоянии;
- подключение цепей выводов «ПАРАЛ» должно осуществляться дифференциальной линией или витой парой;
- модули должны быть синхронизированы по рабочей частоте с помощью вывода «СИНХР»;
- непосредственно возле нагрузки должна располагаться дополнительная емкость, тип и значение емкости представлены в [Табл. 1].

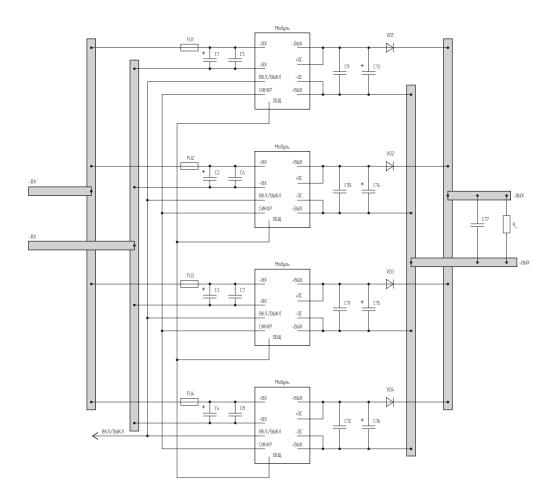


Рис. 12. Схема подключения модулей электропитания для параллельной работы

Тип модуля	Номинальное значение выходного напряжения, В								
	9	12	15	24	27	48			
	Значение емк	Значение емкости, мкФ							
VDMC400	1000	470	470	220	220	100			

Табл. 1. Значение емкости конденсатора С17 (электролитический)

Если подключение осуществляется по [Рис. 14], то необходимо соблюдать дополнительные рекомендации:

- выводы «+OC» и «-OC» ведущего модуля должны подключаться к нагрузке дифференциальной линией или витой парой
- на выходе должен располагаться подгрузочный резистор R1, рассчитанный на максимальную рассеиваемую мощность не менее 10 Вт. Значение сопротивления резистора представлено в [Табл. 2].

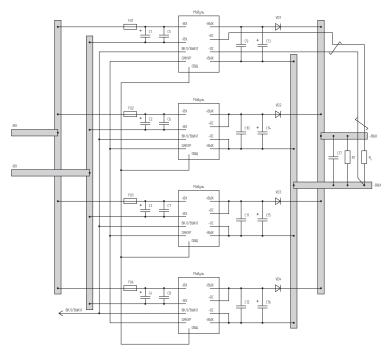


Рис. 13. Схема подключения модулей электропитания для параллельной работы с одним «ведущим» модулем.

Тип модуля	Номинальное значение выходного напряжения, В								
	9	9 12 15 24 28 48							
	Значение со	Значение сопротивления, Ом							
VDMC400	22	36	47	150	220	560			

Табл. 2. Значение сопротивления резистора R1

Предохранители на входе и выходные разделительные диоды изолируют неисправный модуль в случае отказа от остальной системы электропитания.

6. Габаритные чертежи

Вывод	1	2	4	5	6	7	8	9	10	11	12
Назначение	+IN	ON/OFF	-IN	-OUT	-S	TRIM	+S	+OUT	PGOOD	SHARE	SYNC

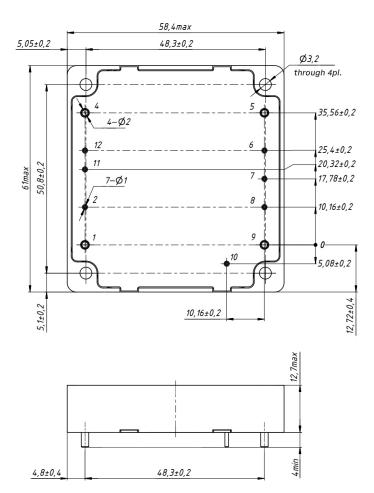


Рис. 14. Исполнение VDMC400.

voltbricks

www.voltbricks.ru info@voltbricks.ru

Компания «Вольтбрикс» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

396005, Россия, Воронежская область, Медовка, Перспективная, д.1 +7 473 211-22-80