
DATASHEET

Cepuя VDR VDR75, VDR100

Ультракомпактные DC/DC преобразователи

Описание

Ультракомпактные изолированные DC/DC модули электропитания

для жёстких условий эксплуатации в аппаратуре промышленного назначения. При небольших габаритах (57,5×33,2×10,25 мм без учёта выводов) максимальная выходная мощность модулей достигает 100 Вт. При этом модули способны работать в широком диапазоне температур корпуса (–60...+125°C для VDR75). Они могут включаться и выключаться по команде, имеют полный комплекс защит от перегрузки по току, короткого замыкания, перегрева, могут включаться последовательно по выходам.

Отсутствие в схеме преобразователя оптронов позволяет модулю надежно функционировать в условиях воздействия ионизирующих излучений и высокой температуры в течение всего срока эксплуатации изделий.

Полимерная герметизирующая заливка обеспечивает надежную защиту от внешних воздействующих факторов и исключает повреждения преобразователя, вызванные вибрацией или попаданием грязи, влаги или соляного тумана. Модули проходят специальные виды температурных и предельных испытаний, в том числе электротермотренировку с экстремальными режимами включения и выключения.

Разработаны в соответствии

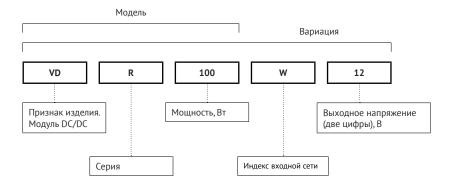
- Характеристики радиочастотных помех
 EN 55011 / 55022 / 55032 (ГОСТ 55022)
- Устойчивость к электромагнитных помехам EN 55024
- Электромагнитная совместимость
 EN 61000
- Требования безопасности
 EN 60950 (ГОСТ 60950)

Особенности

- Гарантия 5 лет
- Выходной ток до 20 А
- Рабочая температура корпуса:
 - -60...+125°C для VDR75
- -60...+115°C для VDR100
- Низкопрофильная 10,25 мм конструкция
- Медный корпус с крепёжными фланцами
- Магнитная обратная связь без оптронов
- Защита от КЗ и перенапряжения, тепловая защита
- Дистанционное вкл/выкл
- Фиксированная частота преобразования 350 кГц
- Типовой КПД 89% (Ивых.=12 В)
- Полимерная герметизирующая заливка
- Внешняя синхронизация частоты преобразования

Описание серии VDR на сайте производителя: https://voltbricks.ru/product/vdr

Отдел продаж +7 473 211-22-80


Техническая поддержка support@voltbricks.ru

3D модели

https://support.voltbricks.ru/models/VDR100.stp

Информация для заказа

Для получения дополнительной информации обратитесь в отдел продаж

+7 473 211-22-80 sales@voltbricks.ru

Выходная мощность и ток

Модель	VDR75				VDR100								
Мощность, Вт	66*	75	75				100						
Выходное напряжение, В	3,3	5	9	12	15	24	28	5	9	12	15	24	28
Макс. выходной ток, А	20	15	8,3	6,25	5	3,1	2,6	20	11,1	8,3	6,6	4,1	3,5

^{*} Мощность ограничена максимальным током 20 A для VDR75 и VDR100.

Индекс номинального входного напряжения

Параметр	Индекс «В»	Индекс «W»
Номинальное входное напряжение, В	12	28
Диапазон входного напряжения, В	936	1875
Переходное напряжение (1 с), В	940	1784

Основные характеристики

Все характеристики приведены для НКУ, Uвх.ном., Iвых.ном., если не указано иначе. Обращаем внимание, что информация в настоящем документе не является полной. Более подробная информация (дополнительные требования, типовые схемы включения, правила эксплуатации и т.п.) приведена в технических условиях, а также в руководящих технических материалах на сайте www.voltbricks.ru в разделе «Документация».

Выходные характеристики

Параметр			Значение		
Подстройка выходного напряжения	Подстройка выходного напряжения				
Нестабильность выходного напряжения	При изменении і (Uвх.минUвх.м	входного напряжения акс.)	макс. ±2% Uвых. ном.		
	При изменении т (0,11номІном.)	гока нагрузки			
	Суммарная неста	абильность	макс. ±6% Ивых. ном.		
Размах пульсаций (пик-пик)	Размах пульсаций (пик-пик)				
Максимальная ёмкость нагрузки*	75 Вт от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 28 В вкл. свыше 28 В 100 Вт от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 6 до 15 В вкл. свыше 15 до 28 В вкл. свыше 28 В		7500 мкФ 1200 мкФ 370 мкФ 75 мкф		
			10000 мкФ 1600 мкФ 500 мкФ 100 мкф		
Время включения (по команде)	<0,1 c				
Переходное отклонение выходного напряжения При изменении Uвх.минUвх.макс.		макс. ±10% от Uном. (длительность фронта >500 мкс)			
При изменении в пределах 0,5×Іном					
Работа на холостом ходу**	Івых < 0.1 * Івых.	ном	Uвых ≤ 1,3·Uвых.ном		

^{*} Наличие максимальной ёмкости на выходе и максимальной нагрузки не гарантирует обеспечение времени установления выходного напряжения в течение 100 мс. Значение выходной ёмкости допускается увеличивать свыше максимального при меньшей омической (активной) нагрузке.

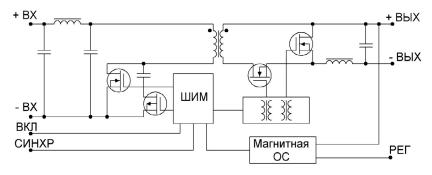
Защиты***

Параметр	Значение		
Уровень срабатывания защиты от перегрузки	<1,5 Рмакс.		
Защита от короткого замыкания	есть		
Защита от перенапряжения на выходе	есть		
Температура срабатывания тепловой защиты	+115+130 °C		
Синусоидальная вибрация	12000 Гц, 200 (20) м/с² (g), 0,3 мм		
Устойчивость к пыли	есть		
Устойчивость к соляному туману	есть		
Устойчивость к влаге (Токр.=35°C)	98%		

^{***} Параметры являются справочными и не могут быть использованы при долговременной работе, превышении максимального выходного тока, при работе вне диапазона рабочих температур, при работе модуля с выходными напряжениями сверх диапазона регулировки.

^{**} При работе на холостом ходу амплитуда пульсаций выходного напряжения не нормируется. При этом возможно проявление режима «релаксации», т.е. периодического появления и пропадания напряжения на выходе модуля, которое не является браковочным признаком. Длительная эксплуатация модуля в режиме холостого хода не рекомендуется.

Основные характеристики (продолжение)


Общие характеристики

Параметр			Значение		
Рабочая температура корпуса	75 Вт 100 Вт		-60+125 °C -60+115 °C		
Рабочая температура окружающей среды (при соблюдении температуры корпуса)	75 Вт 100 Вт		-60+120 °C -60+110 °C		
Температура хранения			-60+125 °C		
Частота преобразования		350 кГц тип. (фикс, ШИМ)			
Входная ёмкость (10 кГц), внешняя	Индекс «В»	75 Вт 100 Вт	110 мкФ тантал. + 20 мкФ керам. 120 мкФ тантал. + 30 мкФ керам.		
	Индекс «W»	75 Вт 100 Вт	55 мкФ тантал. + 10 мкФ керам. 68 мкФ тантал. + 15 мкФ керам.		
Прочность изоляции (60 с)	вход/выход, вход/к	орпус, выход/корпус	~500 В 50 Гц		
			=750 B		
Сопротивление изоляции @ =500 B	вход/выход, вход/к	орпус, выход/корпус	не менее 20 Мом		
Тепловое сопротивление корпуса			8,7 °C/BT		
Дистанционное вкл/выкл	есть (01,1 В или соединение выводов ВКЛ и −ВХ, I≤5мА)				
Типовой MTBF	1737900 ч				
Срок гарантии			5 лет		

Конструктивные параметры

Параметр	Значение
Материал корпуса	медь с покрытием хим. никель
Материал компаунда	эпоксидный
Материал выводов	бронза
Macca	не более 65 г
Температура пайки	не более 260 °C @ 5 с
Габаритные размеры	не более 57,5×33,2×10,25 мм без учета выводов

Топология

Рис. 1. Топология VDR75 и VDR100.

Сервисные функции

Схемы подключения

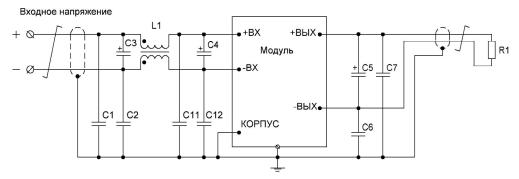


Рис. 2. Типовая схема подключения VDR75 и VDR100.

EN55022 class A	L1	синфазный дроссель			не менее 8 мГн
	C3; C4	керамический конденсатор	Входное напряжение	=12 B =24 (28) B	20 мкФ 10 мкФ
		танталовый конденсатор	Входное напряжение	=12 B =24 (28) B	110 мкФ 55 мкФ
C1, C2, C6, C7, C1	1, C12	керамический конденсатор			10000 пФ
C5		танталовый или алюминие- вый конденсатор	Выходное напряжение	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 28 В вкл. свыше 28 В	440 мкФ тантал. 200 мкФ тантал. 30 мкФ тантал., 68 мкФ алюм. 68 мкФ алюм

Таблица 1. Описание элементов типовой схемы подключения VDR75.

EN55022 class A	L1	синфазный дроссель			не менее 8 мГн
	C3; C4	керамический конденсатор	Входное напряжение	=12 B =24 (28) B	30 мкФ 15 мкФ
		танталовый конденсатор	Входное напряжение	=12 B =24 (28) B	120 мкФ 68 мкФ
C1, C2, C6, C7, C1	1, C12	керамический конденсатор			10000 пФ
C5		танталовый или алюминие- вый конденсатор	Выходное напряжение	от 3 до 6 В вкл. свыше 6 до 15 В вкл. свыше 15 до 28 В вкл. свыше 28 В	440 мкФ тантал. 200 мкФ тантал. 30 мкФ тантал., 68 мкФ алюм. 68 мкФ алюм

Таблица 2. Описание элементов типовой схемы подключения VDR100.

Сервисные функции (продолжение)

Дистанционное управление

Функция дистанционного ВКЛ/ВЫКЛ по команде позволяет управлять работой модуля с использованием механического реле (а), транзистора типа «разомкнутый коллектор» (б) или оптрона (в).

Выключение модуля электропитания должно осуществляться соединением вывода «ВКЛ» с выводом «–ВХ». При этом через ключ может протекать ток до 5 мА, а максимальное падение напряжения на ключе должно быть не более 1,1 В.

Включение модуля электропитания осуществляется размыканием ключа за время не более 5 мкс. В разомкнутом состоянии к ключу приложено напряжение около 5 В, допустимая утечка тока через ключ не должна превышать 50 мкА.

При организации дистанционного включения-выключения одновременно нескольких модулей электропитания не допускается установка дополнительных элементов в цепи, соединяющие выводы «ВКЛ», «–ВХ» и коммутирующий ключ.

Если функция дистанционного ВКЛ/ВЫКЛ не используется, вывод «ВКЛ» допускается оставить неподключенным или выкусить.

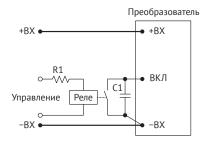
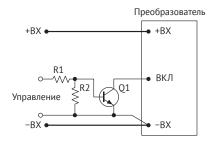



Рис. 3 (а). ВКЛ/ВЫКЛ с помощью реле.

Рис. 3 (б). ВКЛ/ВЫКЛ с помощью биполярного транзистора.

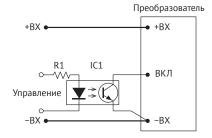


Рис. 3 (в). ВКЛ/ВЫКЛ с помощью оптрона.

Регулировка

Регулировка выходного напряжения модулей электропитания в диапазоне не менее ±5%, может осуществляться, например, путем подключения вывода «РЕГ» через резистор к выводу «-ВЫХ» для увеличения выходного напряжения (а) или к выводу «+ВЫХ» для уменьшения выходного напряжения (б).

При использовании потенциометра R2 и внешних ограничивающих резисторов (R1, R3) возможно реализовать регулировку как в сторону увеличения, так и в сторону уменьшения (в).

В случае необходимости управления выходным напряжением модуля электропитания сигналом внешнего источника тока или напряжения, например, в микроконтроллерных автоматизированных системах управления с помощью сигнала ЦАП, внешний сигнал тока или напряжения необходимо подавать на вывод регулировки относительно вывод «-ВЫХ», в соответствии с рисунками (г) и (д).

Номинал элементов цепи (а, б, в), величины тока (г) и напряжения (д) определяются эмпирически или расчетным способом, указанным в руководящих технических материалах на сайте www.voltbricks.ru.

Преобразователь

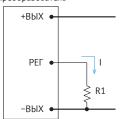


Рис 4 (а). Регулировка увеличением Ивых.

Преобразователь

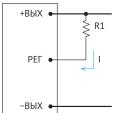


Рис 4 (б). Регулировка снижением Ивых.

Преобразователь

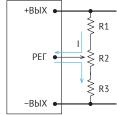


Рис 4 (в). Регулировка потенциометром.

Преобразователь

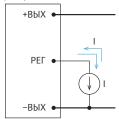


Рис 4 (г). Регулировка источником тока.

Преобразователь

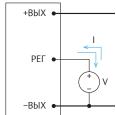
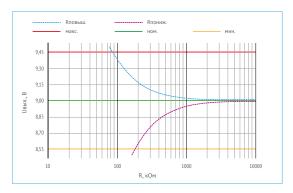
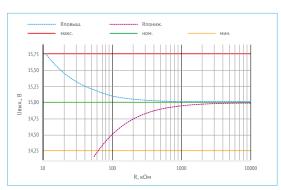


Рис 4 (д). Регулировка источником напряжения.



Сервисные функции (продолжение)


Графики зависимости выходного напряжения от номинала регулировочного резистора для VDR75 и VDR100

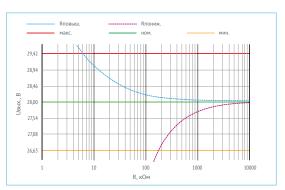

Рис. 5 (а). График зависимости для Uвых.=3,3 В.

Рис. 5 (в). График зависимости для Uвых.=9 В.

Рис. 5 (д). График зависимости для Uвых.=15 B.

Рис. 5 (ж). График зависимости для Uвых.=28 B.

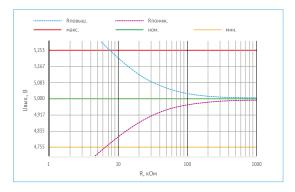


Рис. 5 (б). График зависимости для Uвых.=5 В.

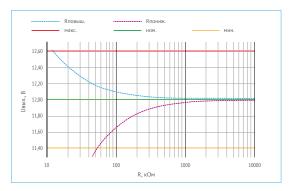


Рис. 5 (г). График зависимости для Uвых.=12 В.

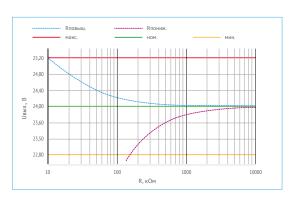
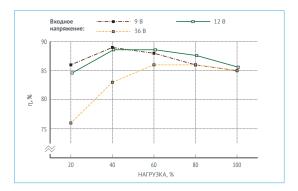
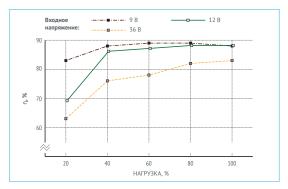
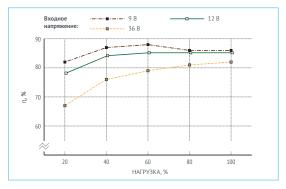
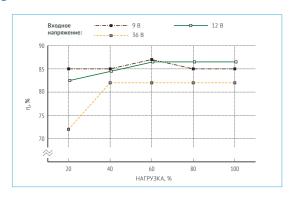



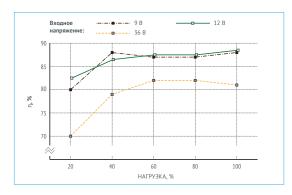
Рис. 5 (е). График зависимости для Uвых.=24 В.

КПД

Зависимость КПД от нагрузки для VDR100 с индексом входной сети «В»

Рис. 6 (а). КПД VDR100B05.


Рис. 6 (в). КПД VDR100B12.

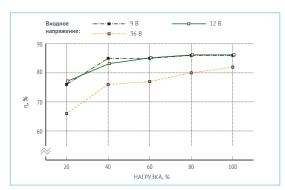

Рис. 6 (д). КПД VDR100B24.

Рис. 6 (6). КПД VDR100B09.

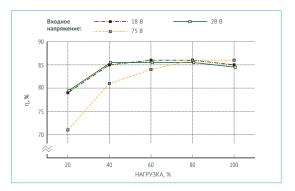

Рис. 6 (г). КПД VDR100B15.

Рис. 6 (е). КПД VDR100B28.

КПД

Зависимость КПД от нагрузки для VDR100 с индексом входной сети «W»

Рис. 7 (а). КПД VDR100W05.

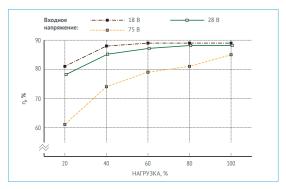


Рис. 7 (в). КПД VDR100W12.

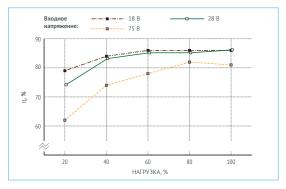
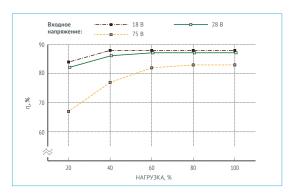
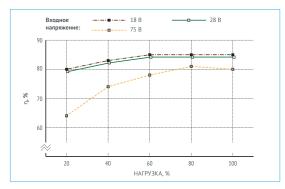
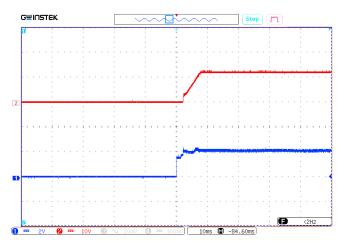




Рис. 7 (д). КПД VDR100W28.

Рис. 7 (6). КПД VDR100W09.

Рис. 7 (г). КПД VDR100W24.



Осциллограммы

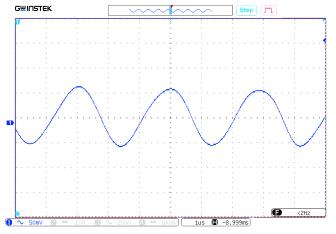
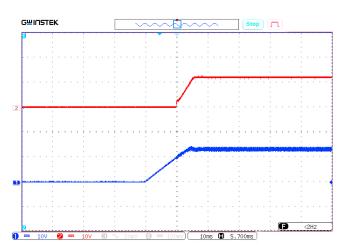
Результаты испытаний VDR100B12

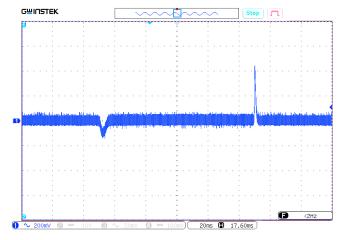
Режимы и условия испытаний Uвх.=12 B, Івых.=8,3 A, Токр.=25°C, Uвых.=12 B, Свых.=100 мкФ

Имеется база данных с результатами по другим вариациям. Для получения информации, пожалуйста, обратитесь к персональному менеджеру или в службу поддержки.

Рис. 8 (а). Осциллограмма установления выходного напряжения с момента подачи команды дистанционного управления.

Луч 1 (синий)— напряжение на выводе «ВКЛ». Масштаб 2 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 10 мс/дел.

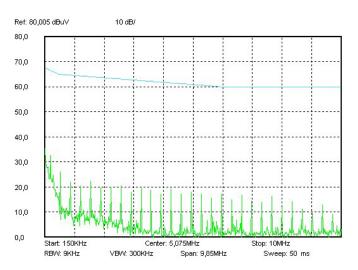



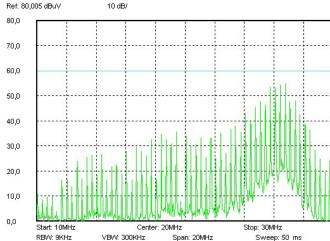

Рис. 8 (в). Осциллограмма пульсаций выходного напряжения.

Масштаб 50 мВ/дел. Развертка 1 мкс/дел.

Рис. 8 (6). Осциллограмма установления выходного напряжения с момента подачи входного напряжения.

Луч 1 (синий)— входное напряжение. Масштаб 10 В/дел. Луч 2 (красный)— выходное напряжение. Масштаб 10 В/дел. Развертка 10 мс/дел.


Рис. 8 (г). Осциллограмма переходного отклонения выходного напряжения при изменении выходного тока от 0 до $100\,\%$.


Масштаб 200 мВ/дел. Развертка 20 мс/дел.

Спектрограммы радиопомех

Результаты испытаний VDR100B12 с типовой схемой подключения

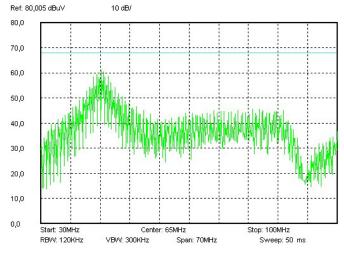
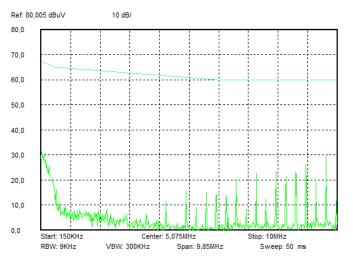

Методика измерения в соответствии с EN55022 / ГОСТ 55022-2012 / CISPR 22-2012. Режимы и условия испытаний Ubx.=12 B, Tokp.=25 °C

Рис. 9 (а). Спектрограмма 0,15-10 MHz.

Рис. 9 (6). Спектрограмма 10-30 MHz.


Рис. 9 (в). Спектрограмма 30-100 MHz.

Спектрограммы радиопомех (продолжение)

Результаты испытаний VDR100W24 с типовой схемой подключения

Методика измерения в соответствии с EN55022 / ГОСТ 55022-2012 / CISPR 22-2012. Режимы и условия испытаний Uвх.=28 B, Tокр.=25 °C

Ref: 80,005 dBuV 10 dB/

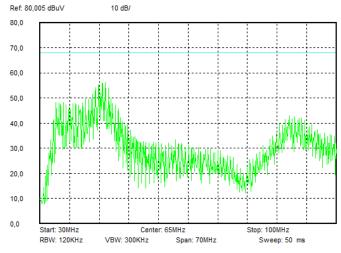
80,0

70,0

60,0

50,0

40,0


20,0

10,0

Start: 10MHz Center: 20MHz Stop: 30MHz
RBW: 9KHz VBW: 300KHz Span: 20MHz Sweep: 50 ms

Рис. 10 (а). Спектрограмма 0,15-10 MHz.

Рис. 10 (б). Спектрограмма 10-30 MHz.

Рис. 10 (в). Спектрограмма 30-100 MHz.

Габаритный чертеж

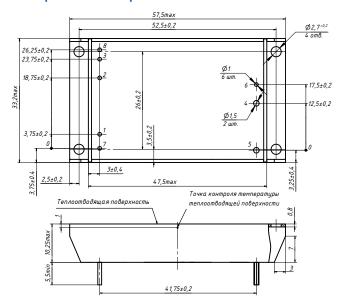


Рис. 11. Исполнение в усиленном корпусе с фланцами.

Назначение выводов

Вывод #	1	2	3	4	5	6	7	8
Назначение	+BX	-BX	ВКЛ	+ВЫХ	-ВЫХ	РЕГ	КОРПУС	СИНХР

Радиаторы охлаждения

Децимальный номер	Расположение рёбер	Размеры A×B×H×D, мм	Площадь, см²	Масса, г
ТУЛВ. 752695.002	Поперечное	57,5×32×14×4	94	38
ТУЛВ. 752695.003	Продольное	57,5×32×14×4	97	39
ТУЛВ. 752695.002-01	Поперечное	57,5×32×24×4	163	55
ТУЛВ. 752695.003-01	Продольное	57,5×32×24×4	170	58

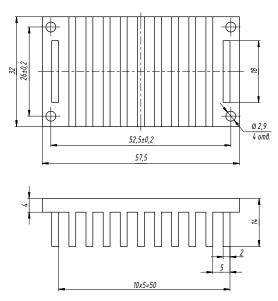


Рис. 12 (а). ТУЛВ. 752695.002.

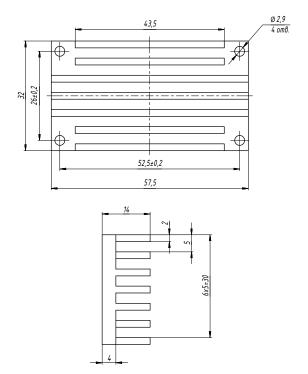


Рис. 12 (в). ТУЛВ. 752695.003.

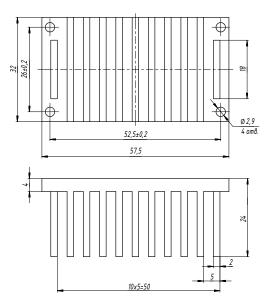


Рис. 12 (6). ТУЛВ. 752695.002-01.

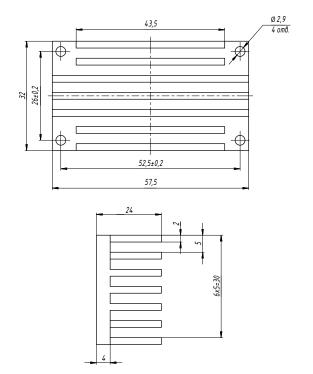


Рис. 12 (г). ТУЛВ. 752695.003-01.

www.voltbricks.ru info@voltbricks.ru

Компания «Вольтбрикс» — ведущий российский разработчик и производитель DC/DC преобразователей и систем электропитания для ответственных сфер применения.

396034, Россия, Воронежская область, Медовка, Перспективная, д.1 +7 473 211-22-80

 $\textbf{\textit{Даташит распространяется на } \textit{\textit{cne}} \textbf{\textit{qy}} \textbf{\textit{outure}} \textbf{\textit{mode}} \textbf{\textit{ene}} \textbf{\textit{vode}} \textbf{\textit{vode}}$